3D Annotations for Geospatial Decision Support Systems

Silvana Zechmeister
VRVis Research Center
Donau-City-Straf3e 11
Austria 1220, Vienna

silvana.zechmeister
@student.tuwien.ac.at

Jargen Waser

VRVis Research Center
Donau-City-Straf3e 11
Austria 1220, Vienna

jwaser@vrvis.at

Daniel Cornel

VRVis Research Center
Donau-City-Straf3e 11
Austria 1220, Vienna

cornel@vrvis.at

ABSTRACT

In virtual 3D environments, it is easy to lose orientation while navigating or changing the view with zooming
and panning operations. In the real world, annotated maps are an established tool to orient oneself in large and
unknown environments. The use of annotations and landmarks in traditional maps can also be transferred to virtual
environments. But occlusions by three-dimensional structures have to be taken into account as well as performance
considerations for an interactive real-time application. Furthermore, annotations should be discreetly integrated
into the existing 3D environment and not distract the viewer’s attention from more important features. In this paper,
we present an implementation of automatic annotations based on open data to improve the spatial orientation in
the highly interactive and dynamic decision support system Visdom. We distinguish between line and area labels
for object-specific labeling, which facilitates a direct association of the labels with their corresponding objects or
regions. The final algorithm provides clearly visible, easily readable and dynamically adapting annotations with
continuous levels of detail integrated into an interactive real-time application.

Keywords

Automated Label Placement, Map Annotation, Geospatial Visualization, Open Data

1 INTRODUCTION | e N

- — “BelgischesViertell
'_"—’ Mauritiusviertel =

The economic growth and climate change have a great | Cacilienviertel
impact on the frequency and intensity of natural dis- \\

asters worldwide. River floodings affect many people
and cause a lot of damage and costs. Therefore, the
need for flood management systems to analyze different
flood scenarios grows, especially in densely populated
areas with river proximity.

Visdom is a flood management system which supports
interactive decision making based on fast geospatial
simulation and visualization. It offers the opportunity
to test different protection measures, to be prepared for
flood disasters and to act correctly in serious situations.
A good support of spatial orientation and navigation in
urban 3D environments for flood managers, relief work-
ers and other persons involved is needed. A common
approach to achieve this aim is the use of annotations.
Thus, this paper covers the extension of Visdom with la-
bels for different landmarks to know where the affected

-
Georgswertel [

Amiley=xapel

Figure 1: Integration of area and street labels into an
interactively explorable and dynamically changing 3D
environment with rising water.

areas are located and to stay oriented while navigating
through the system.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and

The integration of annotations in a 3D dynamic en-
vironment causes different challenges compared with
static 2D city maps. In contrast to static approaches,

the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

dynamic systems need a good trade-off between com-
putation time and optimal label placement to enable a
real-time user interaction. In Visdom, the annotations



should not impede the user by visual distraction or by
hiding important simulation data. The major goal is not
to place as many labels as possible but to support the
navigation in a subtle way. These requirements increase
the importance of a good visual integration into the dy-
namically changing 3D environment (see Figure 1).

The label data used for the annotations are from Geo-
fabrik [Geo18], a free download server which extracts
geospatial data from OpenStreetMap [Opel9] and pro-
vides map textures, line and area shape files. The tex-
tures do not allow the partitioning of label data and
thus updating comes along with loading high volumes
of data and long waiting times. This impedes dynamic
updates during runtime, while the label resolution, ori-
entation and size have to stay static. Their inflexibility
is not applicable with the high interactivity and large
zoom range of Visdom. Furthermore, texture based la-
bels mapped to the ground are unsuitable for annotating
3D objects such as buildings because they are hiding
their own labels. To guarantee label readability, the la-
bels should be embedded into the 3D world and their
font size and orientation should dynamically adapt to
the zoom factor and the point of view.

OpenStreetMap offers an extensive amount of line and
area segments with their own labels and partially in-
complete label text. The high segmentation of lines re-
sults in too many labels in the most cases. To produce
appropriate annotations, preprocessing and intelligent
label placement has to be executed in advance. When
placing a label along a line, the positioning of its let-
ters is not trivial. They have to follow arbitrary curves
which can have a negative impact on label readability.
Thus, the aim is a label appearance that is as straight
as possible. To make the depth information more per-
ceptible, the annotations should be occluded by other
scene objects. The overlap between two labels should
be avoided, since this would destroy their legibility. It
is essential in a real-time application such as Visdom,
to efficiently test labels for intersection with others.

This paper presents an implementation of annotations
which solves the mentioned problems and eases the lo-
calization and identification of streets, rivers, buildings,
places, city districts and other landmarks.

2 RELATED WORK

There is a wide area of application for labeling features,
it is used in cartography, geographic information sys-
tems and point pattern analysis for instance. Thus, there
exist various techniques to find a label placement and
layout according to the annotation application.

Label Placement

Marks and Shieber [MS91] show that label placement
on a map is an NP-hard problem and it needs heuristics

to label large quantities of features. To find best pos-
sible label positions, the definition of the optimum is
essential. Van Dijk [DKSWO02] reviews existing label
placement rules and defines four categories to evalu-
ate label placement quality. The four quality criteria of
Van Dijk are aesthetics, label visibility, feature visibil-
ity and label-feature association. The most common la-
bel features are points, lines and areas to annotate cities,
streets and countries for instance.

Research in the area of 3D maps deals with automating
and optimizing the annotation process concerning the
quality and quantity of label placement. In the case of
dynamic environments with pan and zoom operations,
interactive frame rates with legible annotations embed-
ded into the 3D scene are additional challenges. Nieder-
mann and Nollenburg [NN16] provide a framework that
labels 31% more road sections than the standard Open-
StreetMap renderer with near-optimal quality based on
quality criteria similar to Van Dijk’s. But their algo-
rithm has running times in the range of seconds to one
minute which does not support dynamic user interac-
tion. Schwartges et al. [SWH14] propose an algorithm
that produces high quantities of aesthetically pleasing
labels but it has also problems to provide real-time in-
teraction due to slow label placement during zooming.
The mentioned approaches project the annotations onto
planes because of the easy implementation and good
readability. This impedes a direct label integration into
features with irregular surfaces such as terrains and may
result in low label-feature association. Maas and Doll-
ner [MDO8] use parametric hulls to embed labels also
in curved surfaces to label buildings. Their approach is
limited to three different shape types, which does not al-
low the labeling of streets on uneven terrains. She et al.
[SLL+17] use line features as label base lines to place
labels on arbitrary terrains. Labels nearly perpendicular
to the screen become indecipherable. In this case they
are not placed along their corresponding lines, which
impairs their relationship.

Text Rendering

The use of signed distance fields is a way of text ren-
dering that tries to overcome the resolution limitation
of raster graphics [Gre07]. The signed distance field
texture can be very small and it still produces crisp
text. But this approach does not accurately represent
text contours near to complex letter intersections and it
is not appropriate for very small text sizes [Gus12]. In
such cases, the use of direct rasterized vector graphics
may produce better results [Roul3].

Visualization Techniques

Depending on its appearance, a piece of text can at-
tract attention, be seamlessly integrated into the envi-
ronment or increase legibility and the appealing look of
the whole 3D scene.



Annotations are categorized by the visualization tech-
nique into external and internal labels. External labels
avoid hiding their belonging feature by placing them
besides the feature and connect them with anchor ele-
ments for their association. Their main application area
is the annotation of single 3D objects such as scientific
illustrations [TKGS14]. Multiple external labeled ob-
jects lead to worse label-feature association and visual
clutter. Internal labels, which are directly embedded
into its 3D feature are more suitable for virtual environ-
ments with many features.

Adding an outline to letters can increase their contrast
to the background. The use of halos around labels,
which clear the space close to them, leads to further
readability improvement by losing environment infor-
mation [VTW12]. Vaaraniemi et al. [VFW13] intro-
duce methods to enhance the visibility of labels by fad-
ing, cutting and removing other scene objects that oc-
clude the labels and their features. These methods are
also at the expense of environmental information.

The dynamic change of label position and orientation
enables the adaption to user interaction for better vis-
ibility and readability. But such behavior can result in
flickering and thus distract the user. To avoid this effect,
Maass and Dollner use label blending and animation
[MDO07]. With blending, the labels smoothly fade in
before appearing and fade out before disappearing. The
animation is used to continuously move a label from
one position to another.

3 PREPROCESSING

The first step of the annotation pipeline is the pre-
processing of input data provided by OpenStreetMap
[Opel9]. The data need to be prepared to achieve an
efficient further use and to enable fast rendering. The
incoming data are labels and two different shape types.
There are optional importance and color values avail-
able to adapt the label output accordingly. A label is
assigned to a certain shape and a position on or near
this shape. Its corresponding text might be missing or
empty, depending on the OpenStreetMap data. In this
case the label is not taken into account. The two differ-
ent input shapes are lines and 2D polygons, which are
used for streets, places, buildings and other landmarks.
A line is defined by a number of control points. The
connection of all points results in the line to which the
control points belong. A polygon is defined by a set
of consecutive vertices, whereby the first and the last
vertex are the same.

The OpenStreetMap data include numerous street lines
and each represents a street segment with its own label.
If we would render all these labels, it would result in an
overloaded and confusing scene. To avoid this, we want
to merge lines and their corresponding labels together.
Our approach is to merge two street segments together

if they belong to the same street and are adjacent to
each other. When merging street segments, the labels
assigned to them are merged too. This is done by set-
ting the merged label into the middle of the new merged
line segment. But some restrictions are needed for the
line merge process to prevent merging street segments
when the streets cannot be clearly identified. This is the
case if it is not obvious which direction a street course is
following. To avoid such a scenario we check the angle
between the potential end positions to be merged and if
it is acute-angled, we do not merge. This results in eas-
ily identifiable streets that are labeled before and after
strong bends. The polygons have at most one label, so
there is no need for a reduction as for the lines.

The next preprocessing step after the line merge is the
label sorting. Labels are sorted according to their cam-
era distance and their optional importance values. The
importance values are used to improve the final output.
More important labels are visually differentiated com-
pared with less important labels and get a preferential
treatment. More relevant labels are rendered first to in-
crease the probability of their visibility. But indepen-
dent of the importance values, labels near the camera
should be paid particular attention, since these are most
likely labels the viewer is interested in. Thus, labels
with the same importance are treated according to their
distance to the camera. The camera distance changes
more frequently than the importance values because
it depends on the navigation through the environment.
The labels have to be sorted by their camera distance
each frame, but their order according to their impor-
tance stays the same and can be precomputed during
the preprocessing.

For the application of rendering label text in Visdom we
decided to use vector graphic fonts that allow an adap-
tive rasterization for all required font sizes. In the field
of typography, characters are represented by glyphs and
a vector graphic font contains accessible glyph metrics.
With a given label position, each letter can be placed
appropriately by the use of its metrics. All labels are
rendered with the same font, only in different size and
therefore its glyph metrics can be loaded and stored for
later use. Furthermore, texture atlases containing the
most common 256 letters and their outlines are gener-
ated through rasterization of the letter’s vector graphic
descriptions. There are several texture atlases needed
to cover all required font sizes. If only one texture at-
las would be used and scaled to fit the appropriate font
size, the letters would have a poor, upscaled resolution.
Thus, texture atlases for all initial font sizes are gener-
ated in the preprocessing step.

The last preprocessing step concerns the label orienta-
tion and its great impact on readability. Most languages
have a write direction from left to right and therefore
one is trained to read in the same direction. This holds



Label -&
@ B QQ?L

Figure 2: Tllustration of label (red) and letter positions

(orange) on a horizontally placed area label (a) and a
street label placed along its corresponding street (b).

true for the annotations in Visdom, which are mostly in
German. This is why we aim to orient the labels from
left to right along the street segments to ease reading.
The order of line control points determines the orien-
tation of the corresponding street label. To adapt the
label orientation appropriately, the control point order
needs to be dynamically changed according to the cur-
rent view. For a quick access during rendering, the orig-
inal and the reversed order of control points are stored.
With this prepared and quickly accessible information,
text rendering can be executed in a fast and efficient
way.

4 LABEL & LETTER PLACEMENT

After processing the input data, the labels and their in-
dividual letters need to be placed at the right position.
The label placement is a very complex task with sev-
eral possible solutions. Some of them are already men-
tioned in section 2. The main criterion for label and
letter placement in Visdom is the execution time. It has
to be very fast to be able to afford real-time interaction.
But a good placement has to adapt to the current view to
improve its readability by changing its scale and orien-
tation. As a result, label placement is view-dependent
and is therefore changing very often and needs plenty
of time to process. Due to these preconditions, the aim
is not to find an optimal label placement but a satisfac-
tory and fast placement.

The use of fixed instead of dynamic label positions
turned out as a good choice. It avoids flickering and
saves important runtime through skipping dynamic cal-
culations of label positions. After the determination of
a street or area label’s position, each character has to be
placed along a street or above a point of interest. Con-
trary to the determination of the label position, the letter
placement is executed dynamically to change its orien-
tation and scale according the current view. By means
of the glyph metrics, the letters can be placed in the
scene with their positions only. Thus, the aim is to get
the positions for all letters.

4.1 Area Labels

To determine the letter positions it is necessary to get
the floating label positions first. This is accomplished
by shifting up the area’s midpoint. The label position
(see Figure 2a, red) is then the position of the middle
letter too. Starting from this point each letter is placed

horizontally to the screen by using its corresponding
advance. The glyph advance is the horizontal space
needed to place a certain letter accurately and can be
extracted from the glyph metrics. The letter positions
are calculated by subtracting the glyph advance if the
letter is to the left of the label position and adding it
otherwise. The orange points of Figure 2a represent the
positions of the letters and the space between them is
referred to as the advance.

The final output is a label that is horizontally centered
and floating above its corresponding area. Caused by
using the screen-space for the placement, area labels
have a constant size and are always facing the viewer.
This means they have a high readability because the text
is not scaled when zooming in or out, has no distortion
and is always orthogonal to the screen.

4.2 Street Labels

In consequence of fixed label positions, every street la-
bel is permanently located at the middle of its street seg-
ment. A usual practice of street label placement is the
projection of the labels onto the streets to increase the
label-feature association. But to achieve this, the letter
placement needs to be performed in world-space. The
constant size of area labels turns out to be handy be-
cause the labels are never over- or under-dimensioned
and are always easily readable. To get such a constant
label size also for world-space placement, a scale factor
is used, to resize letters according the current zoom fac-
tor. The field of view and the distance between the label
and the camera is taken into account to get an appropri-
ate scale factor. This factor enables a nearly constant
label size with respect to the screen and thus facilitates
better label readability.

The letter placement starts at the label position, which
is the red point in Figure 2b. Moving along the line by
the same glyph advance procedure as for the area labels
provides letter positions. During the letter placement,
one additional process of improvement is done. The av-
eraging of letter positions reduces heavily bent labels.
This creates a more connected label appearance and a
smoother label course. The letters are averaged by set-
ting the letter positions to the center of their predecessor
and successor. After this step, the spaces between these
letter positions do not comply with the associated glyph
advances. To correct them, the positions are shifted to-
wards their neighbor position accordingly. This averag-
ing procedure is done for all letters with two neighbors.
Since heavily bended labels are hardly readable and vi-
sually less appealing, a label is not rendered if the angle
between its averaged letter positions exceeds a certain
maximum.

The determined label and letter positions facilitate the
execution of visibility tests in the next step.






